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ARBITRARY CASCADE 01’ AIRFOILS
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SUMMARY

.4 procedure is pre.sen~edfor obtaining the pressure distribu-
tion on an arbitrary airfm”l seci!ion in. cascade in a. ilco-
dirnensiona[, incompressible, and nonmkcous$ow. The meihod
considers directly the inj%nce on a giwn airfoil of the rest of
the cascade and eraluahx this interfer~nce by an iteratice process,
l~h<chappeared .fo Conccrge rapidly in fhe cases tried (about unit
solidity, stagger angles of 0° and &IO). Two radiations of the
basic interference calculations are described. One, which is
accurate enough for most purposes, inrolre~ the substitution of
wmrees, sinks, and ~ort[ce~for the interfering airfoils; the other,
which may be desirable for the jinal approm”mation ~in uolres a
contour integration. The compu~ations are simplified by the
v.se qf a chati presented by Betz in a related paper. The numer-
ical labor irwolwd, while considers ble, is less than that required
by the present method~ of conforma[ transformation. Illus-
trative ezamples are included.

INTRODUCTION

The rapid increase of interest. in the design of fans and
turbines has led to many studies of the two-dimensional flo-w
past infinite lattices. Most of these studies in~oIve approxi-
mate procedures (for example, references 1 to 3) or present.
soIutions for special classes of shapes (references 4 and 5).
Recently, attempts have been made to obtain exact solutions
by conformal trarisformation of the lattice to a circle. To
this encl, HoweII (reference 6) used a procedure that. first
transformed the Iattice to an isolated S-shape figure, which
could theu be transformed to a near-circIe by successive
Joukowski transformations and fialI~ to a circle by the
method of reference 7. In reference 8 the cascade was
transformed first to a near-circle and then to a circle, also
with the use of se-reraI stages of conformaI mapping. In
reference 9 the lattice was mapped into a lattice of straight
paralIel lines by means of a function that -w-asdetermined
with the aid of the transformation of this line lattice to a
circle. (See references 10 and 11.) These transformation
are of considerable interest, theoretically. The methods of
refe~eaces 6 and 8 require Iengthy computations> how-ever,
and difficulty has been experienced in obtaining accurate
~umericaI results with the method of reference 9. MI three
methods require modifications for highIy cambered contours
or for Iattices of high stagger and solidity.

The method presented herein does Dot seek a conformal
Wmsformation clirectI-y but, like the older approximate
methods, seeks to evaIuate the interference at each airfoil
due to the presence of all the other airfoils of the cascade.

The veIocity distribution on each airfoiI is considered to be
the sum of that corresponding to its presence in the uniform
free-stream flow pIus that corresponding to its presence in
the interference flow. The interference is calculated from
the veIocity cIistribution on the airfoils so that the method
reduces to an iteration process in which, for the first approxim-
ation, the interference is computed by assuming the free-
stream veIocity distribution to e.sist on each airfoil, and in
subsequent approximations this ~elocity is corrected accord-
ing to the interference derived in the preceding approxi-
mation. A solution is thus found for an arbitiariIy specified
angIe of attack, and this solutiou is used to find the conformal
transformation to the circle and thence the solution for any
other angIe of attack.

The present. method has been found appreciably less
laborious than the methods that seek the conformal trans-
format ion directIy and is also considered more flexible in
that it may be adapted to a variety of cascade problems thati
would be difficult to solve by formaI transformation methods;
for exampIe, the problem of the flow about double cascades
(or superimposed Iat tices) or certain types of “irwerse”
problems involting the determination of the setting or
solidity for a given airfoiI in cascade. Some of the features
of the interference and iteration methods used should also
be useful in the soIution of flows involving a finite number of_.._
interfering bodies.

SY31BOLS

flow function (compIex potentiaI)
velocity potential
stream function
-reIociLy at infinity
circulation
mapping-function parameter
Iocal veIocity
vortex strength
source strength
complex variabIe of physical plane (x +ig)
fixed point. in physical pIane
complex ~ariable of reference pIane (~+iq)
profiIe chord
profile chord used in transformation of reference 7
cascade spacing (distance between corresponding

points on adjacent blades; see fig. 1)
centraL angIe of perfect circIe obtained in trans-

formation of reference 7
central augIe of unit circle of figure 1
surface Ien@h on profiIe
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FIGURE 1.– Flow singularities in circle p!ane and corresponding x’eIocit y vectors

in physical plane.

blade angle (angle between stagger line and normal
to chords; see fig. 1)

solidity (ratio of chord to distance between profiles)
angle between flow direction and normal to stagger

line
angle of attack relative to blade chord
angle of zero lift for cascade, relative to blade chord
static pressure rise
turning angle of How
density of fluid

a~l bn Fourier series coefficients
Subscripts:

f
d
c
r
a
T
t
‘n

TE
s
u
z

1’
0
1
2
)w
ho’

free stream
disturbance
compensating
due to circulation change
addiiiomd
total
tail stagnation point
nose stagnation poin~
trailing edge
due to source rows
due to vortex rows
physical plane
reference plane
mean fio tv
incoming flow
outgoing flow
at flow direction h
at flow direction ko’

THEORY OF INTERFERENCE CALCULATIONS

In order to c.xplain better the basic concep Ls MI(I proc-
edures of the interference calculations, discussion of &
iteration steps will be postponed for the presen!j and h
interfere~ce calcda~ions will be described as if they were
being used to verify a known soMion.

Breakdown of the fiow function into four components,—
Attention is fixed on one airfoiI of the infinite cascade which
will be designated the central airfoil. The flow function on
the bommiary of this &irfoiI is considered tv be the sum of
the folIowing components:

11’~ the flow function for the centmd airfoiI, considered as
isolated in the free-stream flow (the vector average.
of the flow far in front of the caseadc and the flow
far behind tl~e cascade). Inasmuch as the boundary
is a strearnhne in this flow, Tl”7=@P

~1’~ the disturbance along the conLour caused by the pre-
senceof all the other sirfoik of the cascade, designated
the externaI airfoils (U’@= @~+i’YJ.

Ff’c the compensating flow function (which may have
singularities only within the central airfoil) that is
required to maintain the airfoil a streamline in the
presence of the disturbance flow. It is dc~ermincd
by the concli~ion that, on the boundary, its stream
function must be equal and opposite LOthe dishn$-
a.nce stream function. Thus, ~~,=~,+tilc, where
*,= —’@G,

W’r the contribution of the circulation that must be addecl
to maintain the trailing-edge condition; it has only a
real component (E7r=@r),

The sum Wd+ W.+ Wr represents the net change of flow
function due to the presence of the extwrnal airfoils; iL will bc
designated the additional flow function Wa=@a. The sum
Wa+ Wf will be designated the total flow function W~= %-,

The evaluation of the isolated, or free-stream, flow Clf is
readily performed by the method of reference 7 and requires



INTERFERENCE METHOD FOR OBT~TIXG THE POTENTIAL FLOW PAST MI .4RBITR.iRYCASCADE OF AIRFOILS 417

no further discussion in the present paper. The distwbance
flow can be calculated when the potential distribution (or
vekwity distribution) on the externaI airfoils is known.
FinaIIy, the compensating flow ancl the circulation flow are
readily determined, as wiII be shown> when the disturbance
tIow is known. lD the foIIo-iving sections two methods of
calculating the disturbance flow w-N be described: the
appro-ximate source-vortex method and the exact. contour-
integral method.

Disturbance flow by approximate source-vortex nethod.—
Each of the external airfoik is considered to be adequately
represented by an arrangement, of about two sources, three
sinks (or negative sources), and five vortices distributed along
its mean line. The strengths a~d locations of these singulari-
ties are chose~ on the basis of the chordwise thickness dis-
tribution ancl chordwise velocity distribution. The choice is
somewhat arbitrary and ma~ be left. to the judgment of the
worker; howe~er. a detailed method of choice has been
described in the section entitled “Computational Methods.”
The disturbance flow, then, is that of about ten infinite rows
of singularities, equally spaced along the cascade c[irection
except that none are Iocated where the central airfoil is to be
phwed. The fieId of each vortex row is shown in figure 2
where, for convenience, the -rortices are assumed to be of
uni~ strength, spacecl at unit distance a~ong the y-axis.
This figure is from reference 1 and the equation for the flow
is (reference 2]

In order to ilnd the contribution to the disturbance ffom
caused by a ro~ of vortices at, say, 0.3 chord on the external
airfoils, the central airfoil, draw-n to scaIe and properly
oriented relative to the cascade direction, is placed at the
center of figure 2, with the origh at 0.3 chord on the mean
line. The vaIues of velocity potential and stream function
read at. selected points along the airfoil contour, multiplied
by the assumed vortex strength, give directly the contribu-
tion of this vortex row to Qd and !&d. By shifting the central
airfoiI so that the origin is located, in turn, at each of the
other assumed vortex positions cdong the mean line and
repeating the foregoing process, the contributions of all the
vortices in the external airfoils are obtained at the same
points. The sum of these dues at a given point on the
central airfoil represents the contribution of the -rortices in
the lattice to the disturbance functio~ 11’~ at. that point.
The contributions of the sources can be found in the same
-way except. that the lines marked v are considered as —@
and the lines marked @ me considered as ‘Y. Sinks are
considered as negative sources.

Contom-integral method for evaluating disturbance flow
function.—ln the precedbg section, the disturbance field
~as ealctiated approximately by representing each airfoiI by
a somewhat arbitrary arrangement of v-ortices, sources, and
sinks distributed on the mean line. An airfoil may be
represented exactly by a continuous distribution of vortices
along its contour, the linear density of which at every point
equals the -velocity on the airfoiI at that point (reference 12).
The field at & point on the central airfofi due to a row of

correspond&@ surface elements of the externaI airfoils (that
is, a row of ~ortices of strength VT ds) may be obtained
directIy from figure 2. integration of this contribution
along the contours of the external airfoils provides an erect __
determination of the disturbance field. The procedure is w
obvious modification of the prececItig approximate method.

Let @ ancl ‘~ (without. subscripts) denote, respectively, the
‘ potential ant{ stream function of the row of u~it vortices in
figure 2. In orcler to determine the disturbance potential
and stream function at a point z’ on the centraI airfoil, the
airfoil contour, drawn to scale and correctly oriented relative
to the cascade direction, is superimposed on fia~re 2 so that
the origin fal.k, in turn, at a number of pods z on the con-
tour, and for each setting values of @ and ‘~ are reacl at the
point z’. Then the disturbance flow function at # is gi-ren
by

J@d(z’)= @@(Z) ds
c

st’d (2’) = ‘~~T(Z) ds
c

w-here
‘??T(z) 10caI YeIocity on the ahfOfl at variable point z
8 distance aIong airfoil contour
O, ~P values reacI at z’ when origin of figure 2 is at z

and the integration is performed alon~ the airfoil cogtour.
Since t>=(z) ds=d@r(z), the foregoing equations~can be re-
written as

JV.(z’) = v?&?T(z)
c

so that the disturbance, potentiaI and stream function at
point z’ are readiIy evaIuated by pIotting @ and~~ a~ainst
@= and measuring the area under the curves

Determination of compensating flow and circulation
flow.-As has been indicated, the compensating flow f~c-.
tion may have singularities only within the central airfoil
contour, and on the contour, the stream function must be
exactIy equal and opposite to the disturbance stream func-
tion. From the known transformation of the isoIated airfoil
to the circle, which was found in the process of determining
E’f, the correspondence between points on the airfoil and
points On the circle is known. If, then, the desired tom- “-
“sensating stream function is expanded as a Fourier series
in terms of the circle angle ~,

its corresponding veIocity potent.iaI will be (reference 7) the
conjugate series

The determination of @. from ?. is reddy accomplished by
the method of reference 13.
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[CURE2. —VeIocity potentiaI and stream function for a row of vortices of unit strength spaced at unit distance along the v-axis with the central vortez omitted.
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In order to maintain the trailing-edge conclition, a vortex
r. must be added at the center of the circle of such strength
that F=[2% equals the wdue of —d@JdP at the trailing edge
(determined numerically or graphically from a faired plot
of @g against. P). The corresponding contribution to the
Rotential is

The veIocity potential @.=@& +@C+@r that constitutes
the net effect of putting the airfoil in the cascade (that is,
the net interference effect) ma-y no-w be determined by simple
sclclition of the three components. Presumably, since the
calculations -were macle with the correct @T, 0= should be the
difference between @r and @T.

In the final step, ~= is differentiated with xespect to dis-
tance along the airfoil to get. the corresponding interference
effect va on the velocity, which should be the difference be-
t~een ?f and ‘%. t20nvenient procedures for performing
these calculations are discussed in the section entitled “C’om-
putatioual 31ethods.”

lTERATION METHOD

In the preceding sections the basic concepts and proceclure.s
of cascade interference calculations have been outlined. In
the present section, the application of such calculations in
the proposed iteration method of solving cascade How will
be discussed.

.As fist attempted, the method was essentiality as follows:
In the first step, @T is assumed to equal Of and a first approxim-
ation to 0= is calculated on this basis by the methods just
described. In the second step, @~ is assumecl equaI to the
sum of Of and this first approximation to +=, and a second
approximation to ib= is computed. ‘I’he succeeding steps
foIIow the same pattern and are continued until two succes-
si~e @a distributions are essentially the same. The source-
-rortex method was used for the earlier approximations, but
the fiuaI approximation, when convergence is practically
complete, was made by the contour-integraI method. This
procedure, however, was found to converge relati~ely slowly
in some cases, and the general practicability of the interfer-
ence method depends ort a slight modification of the source-
rortex method.

The modification depends upon the observations thzt the
contribution of the sources and sinks to O. changes by rel-
atively little from one appro-ximation to the next. and that.
the contribution of the vortices to @a is nearly proportional
to their total strength ancl relatively independent of their
distribution. Obviously, if it were exactly true that the
contribution of the sources and sinks is constant and that
the contribution of the vortices is proportional to their total
strength, only one interference calculation -w-odd be required
and the solution could then be obtained through a simple
algebraic equation. Thus, let

~~ total circulation on airfoil in cascade
17f total circulation on isolated airfoil at same angle of attack
r= additional circulation (J7r—17f)
Y=* constani contribution of sources and sinks to r=

I’a, contribution of vortices to r= -when ~f is assumed on all

external airfoils
Then, by the preceding assumptions,

whence
rf+ rag

rT=—

1–:
(1)

Since the assumptions are not exactI_y true, the value of
I’~ so calculated is correspondingly inexact; however, it is
much closer to the true value than if it were taken simply
as rf+ ra,+ rag. ~orrespondingly, the potential

is much more accurate thari the sum @r+@.,+@=g.

The second approximation is similarly adjusted. Thus,
corresponding to the % distribution just obtained, a new
set of sources, sinks, and ~ortices are distributed along the
mean line, and new values of 17=~and T=, are calculated.

~djustment follows, as before, from the equation

where the subscripts 1 and 2 refer to the first and second
approximations, respecti~e]~. Solving for rT2 gives

and, fina]ly, the potential is given by

This simple modification of the procedure
that, in the cases tried, the fist step ga-re
-would be satisfactory for many purposes and

is so effectire
solutions that _
the proced&;

had practically converged at the second step. The _addi-
tional complication of keeping the source-sink and the
Tortex effects separate so that I’.. and 17=,can be separately

computed is relati~ely minor and amply repaid by the
rapidity of con~ergence.

Mter the source-vortex method has essentially converged,
a final appro.ximat ion by the cent our-int egral method may
be desirable. In the cases computed, however, this 6nal
step -was found to introduce onIy minor changes in the result.

?2HE FLOW AT OTHER ANGLES OF ATTACK

From a known wzlocit y distribution at a given angle of
attack, the angle of zero ML and the slope of the lift curve,
together tith the -relocity distribution at any other angle
of attack, ma-y be obtained. For this purpose, the ~attice
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is conveniently considered to be related conformably to an
isolated circle by a periodic transformation, which rnighh
be, say, of the tyge used in reference 6, 8, or 9. The explicit
form of the transformation, however, is not needed for the
present purpose.

The flow function in the circle (~) plane that corresponds
to the desired flow in the physical (z) plane is

(3)

In the f-plane this flow may be interpreted as tha~ due to
the system of sources, sinks, and vortices shown in figure 1.
The unit circle ~=eid is a streamline of the flow and the
circulation about any contour enclosing this circle but not
enclosing the points {= * ek is r (positive clockwise).

In the physical (2) plane, the complex velocities at the
points z= m and z= – ~ are determined by equation (3) and
the transformation. Thus,

and

where the angles and velocities are definec~ in figure 1, The
flow far from the ]attice is seen to be the same as th~t of an
infinite vortex row in the uniform flow — T70e-i~0. It shouId
be noted (fig. 1) that hO=ao+@, X,=al+p, and k,=~z+~.
In the following paragraphs it will be shown how to obtain
from the given solution in cascade the parameter K and the
stagnation points 6. and 6~for the corresponding flow about
the circle. These values fi.. the angle of zero lift and the
slope of the lift curve of the airfoil in cascade; together with
the known potential distribution they determine the con-
formal correspondence between the profile and the circIe
and, hence, the velocity distribution at any angIe of attack,

Since the airfoil contour (z-plane) is conformably rel~ted
to the unit circle (~-plane), it follows that at any given angle
of attack a. the change of veIocity potential from nose to
tail stagnation point on both upper and lower surfaces must
be the same for ihe circle and for the profile in cascade.
These potential changes can readiIy be obtained for the
sing]e solution on the lattice frOnl the final % distribution.

A correspondence between points on the airfoil and points
of Or computed by equation (4) with the values of % from

The velocity potentiaI on the unit circle is obttiinecl from
equation (3). Thus,

and the change of potential from nose stagnation point 8. L(J
tail stagnation point @tis

A@r 1

{ [

(COShK–cos d,) (COS!I ~+- COS d~ +
—= - -Cos ko loge ——
cVo 2?rff (Cosll K+ Cos 6,) (Cosh K- (!0s o%)1

2 sin k. tan-*
[-

(sin en–h 0,)sinh 1 +

7sinh2K+ sin Onsin $~

&dtan-l
[

(tan #,Z–tan @,)_tanh K ~

‘- 1tanh2K+tan 6. tan 6, ~
(5)

This potentiaI change may be obtained for either the upper
or the lower surface. Two values are obtained depending
on the choice of quadrant for the third term of equation (5).
The condition of zero velocity at nose and tuil skgnat ion
points is

sin 6 cos Ao—cos Qtanh K sin ho—~ sinh K= o (G)

By use of the known values of I’, A@r, and ko, equrit ions (5)
and (6) can be solved simultaneously for 0., f?t, and K.
Equation (6) can be considered as a quadratic in sin 6 and
with an assumed value of K clctermines corresponding values
of 0. smcl 0,. Equation (5) then deLe~mines A@r, By the
proper choice of va]ues of ~r, a curve. of A@r against. ~{ may
be plotted such that at a. point on this curve A@C= A4~~.
The value of K at this point is Lhe desired vaIuc; tl~o corre-
sponding vaIues of O. and d~are then given by cquat ion (6).
A convenient initiaI choice for K is the value that corresponds
to a lattice of straight lines of the same stagger and of about
10 percent or 20 percent higher solidity. 17igurc 3 is of aid
in this respect, The computed values of K and OL,togethw
with equation (6), determine the angIe of zero lif~ (17=0)
with respect to the airfoil chord, thus

_l tan t?t
7= ‘an tanh K-b m

and the slope of the lift curve, based on mean velocity, is
obtained by differentiating equation (6) with respect to kO;
thus,

(8)

on the unit circle may be obtained by comparing the values
the known potentia~ distribution. The points (~,y) on th~

profile and @ on the circle for which ~r = +T are corresponding points. The velocity on the Iattice p~ofile for tl~c stream
angle A. is

011_d~ I d@r_ d~ d cos AO cosh K (sin %–sin 6,~-sin k. sinb K (COSo–cos 6,)+0 ~o– ——
z Ez– dz T1[ coshz K— COS2$ 1
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where the term in brackets, which represents the ~-elocity on the circle boun daryZ is obtained by clifferemtiating equa-

tion (4). It- follows thzt the ~elocity corresponding to a new stream angle Ao’ is

(:;.O,=(<-) [ cos Ao’cosh h’ (sin e—sin 6J —sin l.Of sinh K (COS O—COS OJ

~ , AC cos ~ cosh K (sin d–sin 0,) –sin ho sinh h’ (COS 9–COS I!?,) 1 (9)

I I I I I ! 1 f $ r I
u f5 30 4ii m ;5 90

Bade CV7q(e, 3, deq

FIGCRE 3.–ReMion Fetween solidity, ‘ckde =gle, and Iarameter Kfcr an infinite Tatfice of
flat r lales.

The foLIowing relat ions, which describe the fIow far away
from the Iattice, are of interest. The stream angles Xl and

r’
sin XO+”F-J

)q=tan-1
Cos Ao

and the angIe thro~mh which the fluid is
tice is given by

turned by the lat-

r— Cos X*
-iT,d

u=tan–I r’
()~— ~’=,

The rise in static pressure across the Iattice is

$=[W(::T

=COSZ X. (sec2 X1—secz k2)

REMMWS ON CONTOUR SIODIFICAllOXS CORRESPONDING
TO LOCAL PRESSURE CHANGES

In reference 14, the modification of an airfod. contour to
ob tain~ approtimat ely~ desired small changes in the pressure
distribution is discussecl. The method, based on the for-
mulas of reference 7, e-raIuates a slight modification of the
conformal transformation of the circle to the airfoil, such that
the stretctig factor at e~~eq=point is changed in proportion
to the desired relative change in locaI ~elocity.

Although in reference 14 the tiirfoil was assumed to lie in
a straighi uniform field, the tre~tment is equally applirable-
when the airfoiI is in a cued or distorted flow field. .iccord-
ingly, the procedure should be applicab~e to airfoils in cascade,
protided the same modification of the external airfoils lea-res
the disturbance flow field essentially unaffected. This
condition may not always be satisfied; howe-rer, in such
cases the method couId possibly be improved by a procedure “
analogous to that described in the section of the present
paper entitled “Iteration Method.”

COSIPUTATIONAL }lETHODS

The basic theory has been presented. In the following
sections some of the methods used for performing the actuil
computations dI be discussed.

Selection of points for evaluation of disturbance fiow.—
The determination of the compensating flow by the method
of reference 13 requires that the disturbance flow be evaluated
at points that., by the conformal transformation of the
isoIated airfoil to a circle, correspond to points equally
spaced about the circle. These points, -which are located by
reference to the conformal transformation, are preferably
chosen so that one is at the trading edge. Experience has
shown that 12 points at 30° intervals yielcl acceptable results,
a~ Ieast in the first approximation, but that 24 points at 15°
intervals are desirable in the final approximation for best
accuracy. If the fiua.I approximation is by the contour-
integral method, which is rather tedious, an acceptable
compromise is as follows: Evaluate O. and V. directly at 15°
inter-raIs onIy in the region of the leading eclge. ancl at 300
intervals over the remainder of the contour, interpolating
from a faired mm-e to determtie @~ and Q?6for the remain-
ing 15° interval points.
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Inasmuch as vaIues for the 12-point and 24-point methocIs
are not incIuded in reference 13 the following table is pre-
sented:

cl
k –—–—

n=6 n=lz
——— — —

0.62231
.16667
.04466

..........- .
------- -----
..........- . Ii 1 1

Evaluation of @f and vs.-Integration of equation (36) of
reference 7 along the circle boundary yields the vaIues of the
po tenticd @~ at points on the airfoil as follows:

~=2CIeqO~p sin (a+~) –cos (a+ q)] (lo)

where

a angle of abtacli

B angle of attack for zero Iift
a.eko radius of the circle to which the airfoil transforms

Y angular position along the circle, as determined by
the transformation

If the transformation has been performed as recommended
in ref erenre 7, the constant a will be slight] y less than one-
fourth the chorcl. Although the potential discontinuity (cor-
responding to the circulation) may, without loss of gcner-
a]ity, be placed at any point, on the contour, tile trafling
eclge will generally be found to be the most convenient
location.

The additional veIocity O. is given by the derivative along
dc~a

the surface ~; it may be determined by numerically or

graphically clifferentiating @~ with respect to the circle

angle ~ and multiplying this slope by ~d. Thus,

(11)

The value of ~ may be obtained from equations (37) and

(38) of reference 7. Thus,

or

where the symboIs e>0, and ‘P are defined in reference 7.

The cascacl e soliciity need be taken into account, ouly wh CD

the airfoil sketch to be used with figure 2 is construct,ccl.
For the subsequent calculations, any convenien~ airfoil
chord may be used, provided only that the same chord is
USCC1for the extemaI airfoils and for the cen~ral airfoil. The
reason is as follows: The strengths of the sources, sinks, and
vortices _used to represent the external airfoils aro propor-
tional to the assumed airfoil chord; hence tl~e additional
potentials induced on the central airfoil \viIlbe proportional
to the assumed chorcl. Since both the additiontd potentictl
@a ancl the clistance s aIong the contour are proportional to

the chord, the additional velocity o==% will bo indrpcmd-

ent of the chorcl.
The chorcl may then couvenien.t Iy bti chosen as th~t. cor-

responding to a= 1 since a would th~n not appear in cquat ions
(10) and (12).

The net velocity at a point on the airfoil surface is the
aIgebraic sum of the -reIocit.y on the isolated airfoiI and tho
inclucec~ velocity ~~aat that pointr.

Selection of vortices for source-vortex method, —l?or cM-
cacles of about. unit solidity, the vortex clistribution for an
airfoil of conventional design may be rcprcsentccl by flvc
vortices spaced on the mean Iine at, 0.1, 0.3, 0.5, 0.7, and
O.9 of the chord. The strengths of the vortices aro dcicr-
minecl by the known cb ordwise distrib ut ion of potential
@T on the upper ancl lower surfaces for the given approxima-
tion. Thus, the difference in potential between the up]mr
and lower surfaces at O.2 chorcl is approximately the total
vorticity between the leading ecIge ancl 0.2 chord CLnclis
considered to be concentrated in the vortex at 0.1 chonl;
simiIarly, the. increase in this potemtiaI diflcrencc bct}sum
0.2 chorcl and O.4-chord yieIds the strcngt h cd the vort cx at.
0.3 chord, ancl so on. The total vortox strength must satisfy

the equation $=~.
.

Selection of sources and sinks for source-vortex method, --–
The seIection of sources anc~sinks to rcprcsen~ the th iclmms
distribution of airfoils is less reaclily systcmztized than is the
selection of vortices to represent the lifh distribution. For
conventional airfoiIs, a reasonably sat isfactury rcprcwn( a-
tion is generally attainable with a source at about 0.025
chord, a second source miciway between the nose and tl]c
position of maximum Lhickness, and sinks fit” 0,5, 0.7, WKJ
0.9 of the chorcl. The strength of each source or sink is
taken as the cIifference between the. “internal flow”’ a~. u
station mic]way between i~ and the prwc(]ing source, and
the internal flow at a station miclway between it. an(l the
foIIowing source. This interred flow at a given s[ation is
estimated to be the product of the thickness and the average
of the upper ancl lower surface velocities at thal station.

obviously) not CLI1airfoil shapes will be. bwt ~reatccl accord-
ing to the pattern just, clescribecl; ho}vever} little ingcnuit y is
required to adjust the treat me.nt to 0 par[ iculm slNlp P,
In any case, the total source strength must equal the tohll
sink strength.
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PROCEDURE

.k suggested step-by-step procedure is m follows:
(1) Obtain the velocities on the airfoiI at. the given angle

of attack in a uniform stream by the method of reference 7.
This step ako determines a conformal correspondence be-
tween points (~, V)on the airfoil and angles q on a circle,

ant{ hence the pot ential distribution ~f by equation (10).
(2) tising the procedure described in the section entitled

“ C’omputationaI Methods,” choose sources, sinks, and vor.
tices to represent the airfoil.

(3) Choose points around the airfoiI at which the disturb-
ance function 1~’~is to be found; these points are conven-
ient ly chosen, by reference to t.ke conformaI transformat ion,
to correspond to 24 (or 12) equaI intervals about the circIe.
By use of flggure2, determine at these points the contributions
to @d and Wdof ecwh source and vortex row. Sum separately
the values clue to sowrces and vortices at each point..

(4) Form the compensating functions Tc= –’Y. both for
-i-ortices and sources and determine the conjugate functions
@C by the methocl of reference 13. Plot @. against P and
determine the slope at the traiIing-edge point. The reIation

‘d@.

0~C=–2Z .~ T=
determines the circulation changes I’., and

rc, due to the source and -rork rows. Obtain ~~ by means

of equation (1).

(5) .At each point

(a) Sum the -ralues of @~, and 0., due to the vortex rows

and muItiply by the ratio ‘=.Ff

(b) Sum the -ralues of @~, and @., due to the rows of

sources and sinks.

(C) Find Or= (F.–~r) :.

(6) Sum the terms (a), (b), and (c) of step (5) to get CD=;
pIot o. against the circle angle p, and cletermine the slopes
at the points used in the ori=ginaI conformal transformation

(’step (1)) at which points the stretching factor ~ will be

known. (.tiother procedure is to cletermine the slopes at
the 24 equally spared points by some numerical method and
then to cletermine the stretching factors at these points by
interpolating from the -raIues founcl in the conforms.1 trans-
format ion. } The adcIitional veIocit-y is given by equation
(11 ); the net ~eIocity on the airfoil surface is the sum of the
additional velocity ant{ the velocity on the isolated airfoil.
The corresponding totaI potential is @r=@. +@~+@r-l-@f,
where @~ is known from step (1).

LJsi.ngthis new potential ancl velocity distribution, repeat
the proceclure, starting from step (2,1. The only moclfication
is tha-t r~ (step (4)) is now obtained from equation (2), and
in step (,5a) the correction factor is I’~,/I’~l. The process is

continued until the changes in lift and -relocity distribution
become small. For practical purposes, the resuIts obtained
in this manner may be entirely satisfactory. More accurate

results may be obtained, however, b-y application of the
contow-integral method as described in the following three
steps.

(7) PIace the airfoil drawing on figure 2 with the origin, .._
in turn, at each of the 24 (or 12) points at. which values are
known from step (6) (considered as z-points), and read the
chart. at the same 24 points (considered as .#-points). .4s
previously noted, some of the z’-points may be negIected.
For each of the z’-pohts plot the -dues of @ reacl at tha~
point against the corresponding values of %-. B-y planimetry
&d the area between the faired eur~e and the @Taxis to
determine @~. The value of ‘P. for each point is determined
simiIarly from a pIo L of W against the corresponding values
of QT.

(8) Form the function V.= –V., determine its conjugate

@c; the circtiation change is T.= —%
d@C

()~ .~
and the

potential Or= 1’=>

(9) Sum the terms @,, @~, and @r to get ~=, plot against
the circle angle p, and measure the slopes. The velocities on
the airfoiI surface in cascade are obtained as described in
step (6). Vnless this velocity distribution differs wideIy
from that obtained in the preceding approximation, it
shouId not be necessary to repeat the procedure.

The ~elocity distribution at another angIe of attack may
be obtained as follows:

(a) SoIre equations (5) and (6) for 0=, 8,, ancI h“. .4
method of solution is indicated in the cliscussion following
equation (6). The angle of zero lift ancl slope of the lift
curve may then be obtainecl from equations (7) and (8).

(b) Obtain the potential distribution @r as a function of 6
(equation (4)); compare -with the known %- to get a corre-
spondence between 0 and position on the airfoil. Equation (9)
then .yieIds the w40city clistributioD at stream angle k’.

ILLUSTRATIVE EXASIPLES

Example I.—The \-elocity distribution was obtained on the
h’.ic~ 4412 airfoil in the coniigurat ion shown in figure 4,
where 8=0°, c=l.032, ancl &=9.7°. This example has been
treated in reference 8. 11 accorilance -with the foregoing
procedure, results as follows were obt ainecl:

(1) In &ure 5 is shown the chord-wise velocity distribu-
tions of the isolatecl airfoiI at the angle of attack of 9.7”, as
obtainecl in a second approximation b-y the method of”- _
reference 7. The Lift coefficient at this angle of attack is .._

1.67 (that is, % =0.837], the angIe of zero lift of the airfoil
c1 ~

k —4.24°, (and the sIope of the lift cur-ie k 6.95 per radian.
(2] By use of the procedure suggested in the sectiogr

entitled ‘170mputationcd 31ethods,” fi~-e vortices, two
sources, ancl three sinks were chosen to represent the airfoil
init idly (fig. 6 ancI table 1).

(3) with the first. Iocation at the trailing edge, 12 locations
on the airfoil -were found corresponding to 30° interds of
the circle angle V. These locations are shown in figure 6.
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FIGURE 4, —NACA 4412 airfoil in lattice amangemcnt, B=LJ”; u= L.032; ).0=9.7°.

VJVO

FIGC?RE 6.—XACA 4412 airfoil sho!~ ing chosen loC&tionS 0[ Seurcc? and Vorticc.s along mmn

line and Iomtions at w’hich chart readings WW@ ~:lk~n.

(The primed points correspond to 15° intervals.) Fi,w{lings
taken at these points from figure 2 me given ill tabIe IT,
These readings, mult ipliwl by the uppropria to source and
vortex strwngths, yielded the values of @& at]d Td du c 10
sources and vortices given in table 111.

(4) The conjugate functions @. were determined by the
12-poil~t methocl and are given in tabk ITT. Tl~e slope.s of
these f~mctions at the trailing-edge point yicklcd circulntiorr

changes ~7~=0.006 and $;= –0,538, from which (equa-

tiorl (1)) -&=O.513. This value corresponds to a firsL ap-

proximation to the lif~ coefl[cient. in cascficle (cl= 1.03).
(5) In table 11~are given the vaIues of CI>COand ~I>&Zdllc tO

vortex rows multipliecI by the mtio ‘: (equation (1)), tl}e
r’,

values of @,, ancl @~, duc to source. rows, and ~llc f unct ion

(6) The aciclitiond potential ~.=~d+~,+~pr is plotted in
figure 7. Slopes of this function were measured at ~minb at.
which the stretching fact or is known from stcp (1). The
additional velocity ZJ=was thm computed by equation (10);
& algebraic sum of u~ and the I’elocitcy in isolated flow

/’\
Source -vortex me fhod; second approxhotti; cl= 0.99_

\
\

0 Contour - in fegrd ne+hod; firs}opprox[mafim; c1= 0.99
— Method of reference 8; c1 =LOO

2 -~ “ , ‘–– /so!afed Uirfoi[ flow; c1 = 1.67
u \

c

$

I

\

o ./ .2 .3 .4 .5 .6 .7 .8 .9
X/c

/.0

FIGURE 5.—Velocities on NAC.4 4412 airfoiI in isolated flow and iu Iattice arrangement. B=OO; u= 1.032; .20=9.7°.
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-24
4=
m

-.[6

-.08

L7 40 /30 !20 fm m 240 280 .?’20 .36a
Crcfs w7@e, p, *

FIGmE T.—The additional flow fmction E.. agaicst circle mgle for X.!C.4 4412 airfoil in
.

Iacticc arrangement. 6=0”; a= 1.032 CQ=9.P.

yielded the cascade velocity (fig. 5). This ~elocity distribu-
tion, together with the total pote~tiaI @~, formed the basis
for a second approximation (figs. 5 and 7). Results of this

tipproxirnatiori are ~= Q.Q06 ~= —O.365, ancl cl= O.99.
CT~ ‘ cVo

~omparison of the velocity distribution with that of the
first approximation shows that the process has satisfactorily
con~erged.

(7) The same 12 points around the airfoil were chosen as
s-points; these, together with four others at 15” intervaIs
around the nose (primed points in & 6) -were used as
z’-points. Readings from the chart (fig. 2) are gi-ren in
table 1’. These values were plotted against total potential
@~ (arbitrarily fixed at O OQ the lower surface at the trailing
edge). (~ sample cur-re is shown in fig. 8.) These CUr~W
were integrated by planimetry. The resuIts-the disturb-
ance potentials and stream functions @~ and Vd—are given
in table W.

(8) The function ~. (table VI) was obtained by 24-point
harmonic analysis and synthesis, with the use of interpolated
values of WCfor the points at -which it w-as not found ex-
plicitly. The sIope of the curve at the trailing-edge point

-.

-.

4’JV

-.

-.

-.

‘G-/. -.8 -.6 -.4 -2 @ 2 .4 .6
+T

FLG~E S.—Typical curws for determination of +a and ?+~ by contour-integral me~hod.

These curwes me for point g on NACA -M2 airfofI fn lattice arrangement. 6=0”; @=l.ON;

W=9.P.

– –0.344, from which a lift coefficient cl=0.99yielded $~–

w-as obtainecI.
(9) The additional potential @c=@. +ibC+@r is plotted iu

figu- ~. The Yelocity distribution -was obtained as before
and is plotted in figure 5. The process appears to have
essentially con~erged.

SimuIt aneous soIution of equations (5) ancl (6) (table VII)

to find the -ralue of K a~ which —7-=~I@~ ~ gave K=0.3QS31

0.=—7.57°, and 0:=181.720. Equations (T) and (8) then
-yieMeil the angle of zero lift, ~= —5.75° and the slope of the
lift ~mvc dc,_3 ~1

da, . .
These values may be compared with

dc ,
~= —5.94° and —=3.’71 from reference S.

da.

In figure 9 is shown a plot of the potential @r agains~ 0 com-
puted by equation (4). ~ constant has been added to make
the po tentiiaI equaI to zero on the lower surface at the traihg
edge. The known total potential in cascade %. and the
corresponding values of z/c are given h table TH.I. Values
of t?, picked off the plot st points where @r is equal to the
gi-ren wdues of %., are shown in the adjacent cokn.n. The
correspondence bet~een airfoil position and the angle o is
thus determined. For the flow angles &’=1.81° and _ -_
AO’= —5.9%0, the -reIocity distributions were computed by
equation (9). In figure 10 these results are compared with the
distributions given in reference 8. The main results of the
calculations are summarized in table IX.

Example U,—In an effort to obtain in the simplest possibIe
manner a reference solution at large bIade anglel concerning
the accuracy of which there could be little doubt, a Iattice
was derived by a modified Joukowski transformation. This
tram~formation is discussed in detafi in the appendk. The
cascade con&uration is shown in figure 11 where P=45°,
a=l.006, and h=49°. This lattice will be referred to as
the “derived airfoiI Iattice. ”

FIGTXSE 9.—\reIcAty potenffaI on unit circIe in ~-plane, for N’ACA 4.U2 airfoil in lattice

=angement. #=O”; c= 1.032; CW=9.T.



426 REPORT NO. 879—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

I I 1 I 1 I 1 ,

0 Coo four in fegrol: Cz= -0. Ot o Con+odr ;nteqrcz~ c1= 0.49

—Reference 8; q =O —Reference 8; cl=0.50
J.6 -

---’%
o ~ )

f.2
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A

,
.

vjv~

.8 ‘ _— .. . ..-

t- ‘=:
.4

> (a) (b)
,

0 .2 .4 .6 .8 /.0 o .2 .4 .6 .8 /.o

—.— ———

X/c X,lc

(8) ao=-5.94”. (b) LYO=l,81”.

FIC+UF.E10.—Veloeit y distributions on N7ACA 4412 airfoil in lattice arrangement. L7=0°; r= 1.032.

.——— _____ - x
d

1

I
FIGURE 11,—Derived airfoil lattice. L?=45*; a= 1,00~ M= +9..

\

The procedure folIowed for the source-voztex method was
similar to that of the first example; the calcula tions are
outlined in figures 12 to 14, Becauso of the unusuril shape
of this profde, only one source was used and t-m adflitioual
sink was inserted at 0.3 chord (fig. 12). From a lift mcM-
cient cl= 0,84 in isolated flow, a single approximalioii yiekicd
a Iif t coefficient CL=O,54 in cascade, which was the same as
that derived from the soIution by conformd t.ransforma tion.
Since ‘the computecl changes in vortax distribution were small,
no further approximtitions were made by this method. By
reference to the velocity distribution of this approximnt ion
(fig. 13)j ‘the process may be seen to have esse~tially COn-

vergecl to the correct solution.
The final contour integration resulted in a Iift coefficient.

c2=0.54 and the velocity distribution shown ill figure 13.
The main results of the calculations arc summfirizccl in
table X.

LANGLEY MEMORIAL .AERONAUTICAL LABORATORY,

NIATIOhTA~ ./LDvIsORY COMMITTIZIZ 170R j4zRoNAuTIcsj

LANGLES FIELD, VA., Januimy 10, 1947,

i
J

a e e’ f
b

FIGURE 12.—Derired airfoil showing chosen locations of sourcos and vortices Shng mcim line.

anl locationsat.whichchartrcsdhrgsweret&ken.

,
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2,0 + Swr-ce- vorf ex’ mei%od; firs f approximdim; cl = 0.5_4—
— Derived by con forma[ Frans formation! cl= 0-54
––– kolfffed fl~wj Cl=0-84

1

1.6
J

/

W’Ko

.4

0 J .2’ .3 .4 .5 .6 .7 .8 .9

z/c

FIGCZi E 13.—1’eIocities on deriwd airfol Iat tice. 6=%”; u= 1.036 X0=49°.

-.[6
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-08
@~

c V6
- f24

o

2 40 m f20 /60 i3X7 240 280 .320 .360

FIGCTiE 14.—The additional flow function@. against ckck angle for the deriwd airfoil Iaitice.

B=~~O ; ~= MM; ?.8=49=.



APPENDIX

DERIVED AIRFOIL LATTICE

The symbols used in the appendix are defined in figure 15
and shotdd not lx confusccl with simikw symbols used in the
main text of the paper.

(lonsider the transformation (reference 10),

The unit circle ((-plane) becomes a Iattice of horizontal
straight lines in the z-phme, spaced at unit intervtds along the

stagger line, making an angle ~— ~ with the axis of reals.

The solidity of this lattice is

( ~/sinhzK+ coszfl + cos 13
o=~ Cos /3 log. -

sinh A’ +‘r

sin p tan-l
sin p

@n!&K+ COS2~ )

This relation is plotted in figure 3.
A closed curve encIosing the points f=& e-~ but not en-

closing the points ~=& eK will transform by equation (Al)
into an infinite lattice of closed shapes in the z-plane, spaced
in the same manner as the straight-line Iattice. Such a
curve is the circle

[=g#+i8

= e+0+f4+ re~b

ir-y

=1.07 ei~+0.09e 3.’5

v

I

I

1
FIGURE 15.—F1ow singularities in f-plane for derived airfoil lattice.

4~g

This circle, where D=45° and K= 0.331, becomes the Iat tico
of profi~es that has been referred to m the derived airfoil
lattice. A flow for which this circle is a streamline and which,
in the. z-pline, has no singularities outside the profiles, is tlm~
due to the system of sources, sinks, and vortices shown in
figure 15. The veIoci~y on the circle bounda~~due to this
system is

where

and

(ia=&’cOs’”+Bsin’”+c&)

[ sin (&&) sin (# —32)
A=e-+O

12,-cos (@–-&) H2- Cos (o–a,) 1
[B=e-$o–~ J,

H,–cos (@–&) -H2-cos (+–8,]“1
Q=g+o[— —J, J,

H,–cos (d–&) ‘Iz,– COS (+–~,) 1

()H=; m+-L
m

ml=e-@~lr2+ e~K-2re K cos 6

m2= e–~~~lrz+ ezK+ 2~eK cos b

The constant I’, which is the circulation about each profiie
(positive clockwise), is determined by the trailing-edge
condition as

(A2)

where A, B, and O are evaluated a~ the anglo @ which
corres~onds to the traili~g edge of the protiIe. The angIc
of zero lift-T with respect to the airfoil chord is obtained from
equation (A2) by setting 17= O; thus,

_~./
~= —tlm ;–0

The stret thing factor from the circle to tho lattice is
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where

~= (cosh 211–cosh 2J GOS
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26)2+ (Sinh 24 sin 26)2

l?=4 cos’j3 cosh2K (cosM+– cos%) +
4 Si112~ sinh2K (cosh2~–sinz 0) –
Sifl 2/9 Shl 20 sinh 2h’

.

and $ and 6 are obtained from $0, #, r, and 6 as

.@=r cos (8—6) + +ez*~-r2 Sinz (8—3)

The -reIocity at any point. on the surface of a profile is

G).=(%)EI
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TO REPRESENT THE~N-ACA 4412 AIRFOIL LATTICE _

I 1

~

-f m
~, ma

Tortex source
l~gti:)m lcwation

FiIst ap- Wcond ap- (fig. 6) First ap- Second ap-
prm#.- proxima- pr:*- pm~-

tion

f 0.379 am a 0.097 0.101
. 1s4 . 09s T .044 .WA
.m .062 –. 043

:
–. 041

.647 .042 f –. 045 –. 047
? .052 .023 q –. 053 –. 057

TABLE H.-CHART READINGS FOR A’AC.% 4412 AIRFOIL LATTICE, SOURCE-VORTEX METHOD

I * for Fret= row ofunit strength

0. cm
.rna
. @Is
.fm
. M2

–. ml
o
0

–. C(37
–.015
–. 011
0

T 6

— —

c!. 02-s 0.011
.02S .011
. ox+ .039
.036
.002 –: E

–.022 –. 028
0 –. Co2

. rm .Im2
–. W6 . cm
–.014 –. m
–. 010 –. Ims

o .ro5

0-010
.010
. m5

–. 002
–. 01!2
–. 015
–. NM

. WE’

. WE
o

.062

.034

r w

— —

0:O& o.all
o

–. 001 –.~~
–.co? –. (MI7
–. 013 –. 013
–. 013 –.011
–. 032 0

.010 .016

.015 .023

.010 .016
0 .131.4

. cm o

–0.211
—. 1s2
–.115
–. 045
–. 607
0
0
0

–. 014
–. 05s
–. 125
–. 1S5

* for vortex raw of tit strmgth

I

t
B -f

1

–o.1s4 –CI. 176
–. 15S –. 150
–. G% –. 0s3
–. 030 –. 02$
–. cm. o
–. cm. –. ml
–-m –. @J~

.001 0
–. lx16 –. LM4
–. C42 –. 037
–. 102 –. G94
–. 161 –. 153

s

–o. 120
–. 096
–- 0+4
–. CM
–. 002
–. 019
—. 02A
–. 012

.031
–. 010
–. Oa
—.097

e

–O. 070
–.047
–. 011
0

_. l)q~

–. 0s7
–. 063
–. 044
–. 013

.031
–. 01s
–. 04s

r

-0.025
–. 013
0

–. 019
–. c-lo
–. 115
—. Ml
–.OW
–. 04s
–. Olo

0
-.015

v

–: 023

–.Cuo
–. 056
–. 12j
–. 174
–.1s3
–. 156
–. 09s
–. 042
—. roo
o
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TABLE 111,—CONTRI13UTIOA”S OF INDIJ71DUA.L SOURCE AND VORTEX ROWS TO THE DISTURBANCE FLOW FUNCTION

ON THE NACA 4412 AIRF-OIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METI.LOD -

I Vortex location Source location I

Point on airfoil (fig. 6)

—

‘v
=d due to vortex rows

0.0020 0. W113 0.0034 1’ “-
.0020 . wd3 .0033 1:
. (X316 .0306

9027
–. Mlol –. 0021

–. Ormz ‘ –. Olmi –. Om
c07 –. 0015 –, m3 -, cilxT7. . .

3019 –. 0013 I –. 0036
1036 –. 0022 0

l-w .00$6 MO . 0+338
002 .0310 .001’4 . c@U2
011 0 .0410 coos

.0033 0 . #02
. w“. I . O(H)5 C0?31 o

@~ due LOsource rows

0.0205 0.0377 -0.0030 -o. owl
.0176

-g. Lk331
.0366 –. oQ2a

.0112
–. O@3

. @936 –. 0W5 o
. (HM4 .0311

-. mm
o –. W03

. lm7 o –, 5311
–. Ca30

–. ma
o . 00Q1 –. 0Q24

-. Wrls

o
–. 0352

. Om –. 0227
–. 0032

0
–. c054 –. mw

o -. lM19 –. al 10
.0014 .0302

–, cm
-. WJ06 –. 0022

CH%6 .0016 0 -. ocm
–. @J52

.0121
_. #~~

. OMl ~: W& o
.0130 . 0%7

-. cm2
–. 01X17 o

0. lm30
. lx130
. CQ30
.0023
.0038

–. 0034
0
o

–. M26
–. (HJ57
–. 0042

.................................. ...--.1 “

** due to vortex rows

-0.0090
–. 0000
–. 0014
n

–o. 0024
-.0013
0

0. 0CQ2
. cMJ2
. OIXM
.0025
. 0W2

o. (MM
.0024
. m+
. c003
.0321
.rdol

o
0

–. 00Q3
–. 01X16
–. ccm

o

–o. 0221
–. 0176
–. am
–. cmo7
–. 0035
–. 0035
–. lJM4
–. 0321
–. 0302
–. 0#18
–. 0092
–. 0178

–0. ml –o. Ocm
–. CmM
–. ofxf2

. WJl

. IX05

. WOO

.6022
-.0032
–. 0303

0
–. Oixd
-. cm2

—

o
0

–. 0TKJ5

G82–.0Q91
–. 0036
–. 0481
–. 0?)51
–. @222
–. OW3

o

6
.0$01
. CQ34
. W37
. IN3G

—. 0Q18
-. cN339
-,0111
–. 0116
–. 00s7
–. 03+6
–. (3309
n

. CQ03

.Mwo
; lm;

–. W2’f
–. 0W7
–. mm

I-I

–, 0332
–. oa73
–. Oogl
-.0056
–. 0017

.0201
–. 0022
–. 0061

0
0

-. olM2
-.0312
–. lm9
–. 0216
–. G305-.0014

I

TABLE N.-TOTAL EFFECT OF SOURCE AND VORTEX ROWS, ANIS CORRESPONDING DERIVED POTENTIALS AND
VELOCITIES, ON NACA 4412 AIRFOIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METHOD

I
Values at points on figure 6 II Values at points where ~ is known

/

— —
0.6089 0.0125

.0503
: w . loal
.0581 .m

–. 1801 . ‘tOinl
=2998
–. 2543 :8%
-.0043 .Wwo

.2236

.5481 —

.8422
L. 0498 _
L 1243

0.0125
. owl
.1000
.m
. 4&Jo
. 6#o
.W2
.9M

I Sources T“ort ices Cppcr surfwm

0.6056
.5355
.3592
.1429

–. 0365
–. 1126
–. o.t59

.1642

.4802

.8365
I. 1558
I. 3716
I. 4451

7.153 -. ;5J
4.541
3. m –. MO
2.733 –. 148
2.218 —. 140
2.133 –. 108
2498 –. 057
3.220 –. 025

z w .2.033
2. clJ2 l.m
1.853 1.693
1.719 1.571
L 523 L 3X3
I. 345 L 23?
1. 17s 1.121
1.078 L 053

0. CKslo
. 0#1

0M7
. 0Q16
. CM321
. c019
.0303

-. IM16
–. W37
–, IX137
-. cmz
–. CQ07

cmz

0.0014
. WJ14
.0015
.0009

–. 0303
–.wm
–. 0230
-. Q332
–. 0218

.0007

.0022

.0022

.0014

0.0240
.0216
,0138
.0017

–. 0087
–. 0167
-.0177
-.0142
–. 0064

. 00~6

.0151

.0219

.0240

-0.1034
–. 0848
–. 0148
-.0168
–. 0146
–. 0313
–. 0347
-.0243
–. 0139
–. 0205
–. 0.W3
–. 0803
–. 1034

0.0013
.0414
.0513
.0314
.0040

–, 0050
.0037
. lxM4

–. cn9s
—.0356
–. 0505
-.0372

. Ml13

O.@267
.0066
. CQ50
.0017

–. 0234
–. CQ57
–. 001.4

.0029

.0012
–. 0030
-.0046

.0015

. 0Q67

0.0049
.0295
.0347
.0206
. LnXM

–. Ck365
.0014
. KJ45

–, 0053
–. 0236
–, 0338
–. 0218

WM9

–O. 0270
-.0540
-.0810
-. 10s0
–. 13S3
-.1620
–. 1891
-.2101
–. 2.431
–. 2701
–. 2971
–. 3241
–. 3511

-0.0356
–. 0427
–. 0456
-.0542
-. 0EQ6
–. 0506
–. 0228
–. 0378

-0.0451
–. 0651
-.0847
–. 1027
-.1157
-. 1W8
–. 0621
–. 0328

Lower surface

8.203 –O. 372
4.003 –< m
3.304 –+25
2.413 –. 248
L 914 –, 221
1. W3 -.192
2.335 –. 146
3.030 –. 101

‘

o. 4% 0.080
-.314 -.614
–. 541 -.821
-.076 –, 924
-.734 –, 575
-.790 –, %!S
-. S34 -. D7Q
–. 845 –. 2 M

t
II

1,

~ Velocities along the surface are considered positive when directed from the trailing edge to the leading edge on the lower surface, and from the leading edge to the trailing edge on the upper
surface.
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T.JIBLEY.—CHART READINGS FOR H$TEGR.ATION ‘WITH RESPECT TO %; NAC’A 4-!12 AIRFOIL IN CASCADE;
CONTOUR-INTEGRAL METHOD

‘--=---l blclc ‘Ie ‘ ‘ ‘“ ‘ ‘ ‘--‘--1
*T4 I ILOW 0.5411

, ,o=i5
~ 0.3M 0.0401 –0. m22 –0.32S0 –0. 2911 –CL I&: o. 1TS3 0. ~~~

F

o. 3s L IxxQ

0
0

–.cm5
—. OW
–.010
–.oll
–cm
–. 6K32

. @Ii

.015

.02$

.02s

.0295

.022

:%?

a“
o
0

–Lam
–. IY.B
–.OLO
–.COS
–.fwl

.537

.015

. 0Z2

.027
- @&j

.0a3

.tM&
o

–o. cm
l-l

–o. Cmo
–. cm
–. (KI15

o
–. 0315
–. W2
–. @31

. imz

.m

.011

.01.45

.014

. CQ95
- WO

–- ol~
–. ~~~

–0.0395
–. Wi5
–. cm
–.cms
o
0

. GlxF

.032

.02.45

.(W55

. mm

. @’31
–. m
–. Om
–. 023
–.015

–o. cm
–. Im6
–. W15
–. Ml

- w“
o

8
0
0

–. 003.5
–. WE
–. 0155
–. 027
–.025
–.017

o. 02Q
.021
.0195
.0145
.03.55

0.023
. 02i5
.025
.010

–. cm6
–. 012
–. 014
–. 014
–. 010
–. m
–. @325
–. IXQ5
o
0

.02.s

. ml

0.0215
.02u
.0105

–. 0335
–. om-
–. 025
–. 026
–. 024
–. 01s
–. 0125
–. 006
–. cK115

.ax%5
o

.GUm

.0155

0. w-s
.0365

–. fms
–. 0125
–. 023
–. 026
—- o~-
_. o~l~
–. 015
–. cm

.am

.m55

.ms
-Mm

o. ml
o

–. m
–. w
–. 016
–. 01.s
–. 014
–. 010
–. W12

.W6

.015

.0195

.0215

.016

.Cc-4
o

.

6
–.(KIL5
–.CNM
–. cm
–.CYE :. C025

: g-

–. Cw5
o

. Ml

.fm

–: E
–. 015

0
.Cw5
.ol~
.019
.022
.022
.0105

–. 0015
–. C4!s

o
0
0

–. 003
–. IM65
–. 0115–. oI~
—. 014
–all

o
.034

i
*

–; 032 –o. 217
–. 187
–. lzu
–. 04s
—. 0oz5
–. mm

o
0

–o. 1s6
–. 159
–. 0$!5
–. @w

o
. ~~
.CN)K!

–. Cm
–.@315
–. CQL

o
–.mz
–. cHB5
–. w
–. 103
–. 164

–o. 130
–. lo~
–. 04s
–. 034

.@J2
–. m35
~ ::;

–. 01i5
–.01!5
–. 03S
–. m
II

–. 0155
–. 059
–. h%

–o.c=%
–. o-45
–.03s5

. W2.5
–. 023
–. 040
–. 05s
–. 064
–. L!&
–.056
–. ~q
–. O&-

–.015
o

–. 016
–. 0475

-0.018
–. M17.5

.031
–. 023
–. m
–.103
–. 119
—. 129
–. L2S
–. m
–. 103
–.0s2
–. 058
–. 016
0

–. 009

–: lx12

–. 0125

–. 062
–. 131
—. 1.59
–. 181
–. 191
–. 1s!3
–. 1’s1
–. 164
—x 134
–. 105
—. 047
; m-

–. 0L2
–. Ow
–. L2s
–. 157
–. lx
–. 1s9
–. 1s6
—. 176
–. 15s
–. 133
–. 10L
–. 044
–. !3275

o
6

–. 11115
–. m
–.017
–.M3
–. 134
–. 1SSo

1 t

TABLE W.-DERIVED POTENTIALS AND VELOCITIES Oh’ NTACA 4412 AIRFOIL IN CASCADE; CONTOUR-INTEGRAL
METHOD

—

Values atpoints on Egure 6

1
*L

2’ a

a . . . . . . . . . . . . . . ..-. O. 02S1
h.. - . . ..--—___ - oq~g
c------------------- . OL&l
d . . ..- . . . ..- . . ----- . rxr33
e... ___. . . . . . . . . . –. Olx
e’.. . . . . . . . . . . . . . . . . –. 0184
f_______________ –. 0219
f’ . . . . . . . . . . . . . . . . . –-. Ozlo

;=::;::::: --: :-E “

hr---------------- –.5%!6
i------------------- –. mn
j ------------------- -0302
k-------------- .oL15
1. . . . . . . . . . . . . . . . . . . -0232
a . . . . . . . . . . . . . . . . . . . . 02.?Jl

–o. IMS7
–. Om
–.03L4
–. m
–. oW9
–. OWl
–.0114
–. O1?JI
–. 0164
–. o151
–. 0123
–. 011s
–. Wxr2
–.01S7
–. 1336~
–. 05S6
–. 06s7

o.ml
. Ozil.G2
.0257
.0w3
. CClli

–.~l~
–. W31
–. W35
–. IXI15
–. iw3
–. co%
–. 0123
–. 0261
–.0.s23
—. 0224

. m21

-0.01:4
–. 0432
–.0i21
—. LWAS
–. 1296
–. 14K!
–. Ws4
—. 172s
–. lsn
–. 2il17
-.2161
–. 2305
–. 2449
–. 2i37
–. WZ5
–. 3313
–.WJ31

o.5i17
:3wm2

.1119
—. w;
–. L23i
–. 1465
–. X329
–. &S18

.03ea

.fx$

. 2?47

.445

. i~~

1.118:
L3365
L QIT

Upper >mrface
—

0.0125
.Qm

[

. mm

.2033

.4WI

.Ewl
-m
.Sml

2. z L $93
Z.m L777
1. Ss3 L 669
1.719 L 537
1.523 L 3W
L 345 L 2.x2

, ::: :.

II Lowr suriaw

0:O&

. Um

.m
-4cal
.m
.Sm3
.W33

–o. 05%S
–. 0792
–. 0%3s
–. 107S
–. 1199
–. loi3
-.05$4
–. 0333

s.262
4. m
3.304
2. 4L3
L914
L %3
2335
3.080

–a.494
–. 364
-.310
–. Z@
–. m
–. 223
—. 132
–. msII I

I VeIoeities zlox the >wfmx are mnsidered pm~ti~e when directed from the trailing edge to the leading edge on the lower surface, fad from the Ieading edge to the traibg edge on the
upper surface.
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TABLE VII.-COMPUTATION OF MAPPING FU&TCTION CONSTANTS FOR NACA 4412 AIRFOIL LATTICE
--

K I (d% (d:g) 1
s’

181.62
1s2. 3s
181. S3
181.73
181.72
181.73
181.72

1.1307
.9585

1. 09m
1. 10s8
1.1147
1.112$
1.1144

T

0.0157
.0152
.0156
.0157
.0157
.0157
.0157

v

0.2579
.2895
28s8

. 2s!32

. 2S82
,7$$2
.2882

1.4343
1.2032
1. 3S02
1.4127
1. ‘4186
J.4167

‘f’~(-$%)

TABLE I’111.—RELATION BETWEEN CIRCLE AIYGLE 6 (~-PLANE) AND LOCATION OX NACA 4412 AIRFOIL IN
——

I Upper surface

Point

–O. 2911
–. 1064

. 17s3

.4986

.7954
1.0000

0.006
.090
.270
.501
.740
.927

(d:g)

1,4
17,0
45,7
98,6

145.2
16% 2

, Lower surface 1

Point %fc 1‘o Zjc (C&)
1 1 1 i

a... ---------------------- o. S875 l.fml –17s.3
b... - . . . . ..-. - . . . -------- .54243 . 9m -167.3
c . . . . . . . .._=.> .--- . . . . ..-. .3106 .707 –135.8
d . . . . . . . . . . . . . . . . . . . . . . . .0401 .435 -82.9
e . . . . . .._-_. _--. ..-.. -.. –. 2022 .187 -35.1
f.. -... ----------------- –. 32SU .033 –11.8

TABLE 1X.—CONSTANTS OF NACA 4412 AIRFOIL LATTICE

I I ! I t I r 1

Ivfethod A~,jc T’o A~,/c I b A? JcT’e c1 K (d:g) dc~dao
(d$!)

Sonrce-vortex method; first approximation . ..-.. - . . ..-- . . . ..- . . ..- 0. W -0.538 –:: :2-J
Sourse-vorte~ method; second approximation.. . . . . . . . . . . . . . . . . . . . . .006

L 03 ------------
–. 365

Contou.tik~al method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ----------- . -------------
.99 -------------- ::;::::::1:: 2-1::::::::: :::::::::::~

–. 346
Nfethod ofreference 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -----------

.99 0.3083
1.00

181.73 3.71
.3109

–5. 75
181,79 3.71 -5, Q4

TABLE X.—CONSTANTS OF DERIVED AIRFOIL LATTICE

l— I I I I 1 t ! I f
Method

I
AF,/cli AF,/c ~’o

‘>’: :, k ----:~----w’

Ar Jc Tf

Source-vortex method; first approximation . . . . . . . . . . . . . . . . . . . . . . . . –O. 083 –o. 101
Contou-hteg&I method .--. .-.-. .-_ . . .._-__ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --------------
COtiOrmaI tr8nsf0rmati0n ------------------------------------------ -------------- -------------- . . . . . . . . . . . . . .


